Skip to content

Version Notice

(dmontagu/graph-run-object preview) This documentation is ahead of the last release by 31 commits. You may see documentation for features not yet supported in the latest release v0.0.49 2025-04-01.

pydantic_ai.messages

The structure of ModelMessage can be shown as a graph:

graph RL
    SystemPromptPart(SystemPromptPart) --- ModelRequestPart
    UserPromptPart(UserPromptPart) --- ModelRequestPart
    ToolReturnPart(ToolReturnPart) --- ModelRequestPart
    RetryPromptPart(RetryPromptPart) --- ModelRequestPart
    TextPart(TextPart) --- ModelResponsePart
    ToolCallPart(ToolCallPart) --- ModelResponsePart
    ModelRequestPart("ModelRequestPart<br>(Union)") --- ModelRequest
    ModelRequest("ModelRequest(parts=list[...])") --- ModelMessage
    ModelResponsePart("ModelResponsePart<br>(Union)") --- ModelResponse
    ModelResponse("ModelResponse(parts=list[...])") --- ModelMessage("ModelMessage<br>(Union)")

SystemPromptPart dataclass

A system prompt, generally written by the application developer.

This gives the model context and guidance on how to respond.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@dataclass
class SystemPromptPart:
    """A system prompt, generally written by the application developer.

    This gives the model context and guidance on how to respond.
    """

    content: str
    """The content of the prompt."""

    dynamic_ref: str | None = None
    """The ref of the dynamic system prompt function that generated this part.

    Only set if system prompt is dynamic, see [`system_prompt`][pydantic_ai.Agent.system_prompt] for more information.
    """

    part_kind: Literal['system-prompt'] = 'system-prompt'
    """Part type identifier, this is available on all parts as a discriminator."""

content instance-attribute

content: str

The content of the prompt.

dynamic_ref class-attribute instance-attribute

dynamic_ref: str | None = None

The ref of the dynamic system prompt function that generated this part.

Only set if system prompt is dynamic, see system_prompt for more information.

part_kind class-attribute instance-attribute

part_kind: Literal['system-prompt'] = 'system-prompt'

Part type identifier, this is available on all parts as a discriminator.

UserPromptPart dataclass

A user prompt, generally written by the end user.

Content comes from the user_prompt parameter of Agent.run, Agent.run_sync, and Agent.run_stream.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@dataclass
class UserPromptPart:
    """A user prompt, generally written by the end user.

    Content comes from the `user_prompt` parameter of [`Agent.run`][pydantic_ai.Agent.run],
    [`Agent.run_sync`][pydantic_ai.Agent.run_sync], and [`Agent.run_stream`][pydantic_ai.Agent.run_stream].
    """

    content: str
    """The content of the prompt."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp of the prompt."""

    part_kind: Literal['user-prompt'] = 'user-prompt'
    """Part type identifier, this is available on all parts as a discriminator."""

content instance-attribute

content: str

The content of the prompt.

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

The timestamp of the prompt.

part_kind class-attribute instance-attribute

part_kind: Literal['user-prompt'] = 'user-prompt'

Part type identifier, this is available on all parts as a discriminator.

ToolReturnPart dataclass

A tool return message, this encodes the result of running a tool.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
@dataclass
class ToolReturnPart:
    """A tool return message, this encodes the result of running a tool."""

    tool_name: str
    """The name of the "tool" was called."""

    content: Any
    """The return value."""

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp, when the tool returned."""

    part_kind: Literal['tool-return'] = 'tool-return'
    """Part type identifier, this is available on all parts as a discriminator."""

    def model_response_str(self) -> str:
        """Return a string representation of the content for the model."""
        if isinstance(self.content, str):
            return self.content
        else:
            return tool_return_ta.dump_json(self.content).decode()

    def model_response_object(self) -> dict[str, Any]:
        """Return a dictionary representation of the content, wrapping non-dict types appropriately."""
        # gemini supports JSON dict return values, but no other JSON types, hence we wrap anything else in a dict
        if isinstance(self.content, dict):
            return tool_return_ta.dump_python(self.content, mode='json')  # pyright: ignore[reportUnknownMemberType]
        else:
            return {'return_value': tool_return_ta.dump_python(self.content, mode='json')}

tool_name instance-attribute

tool_name: str

The name of the "tool" was called.

content instance-attribute

content: Any

The return value.

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

Optional tool call identifier, this is used by some models including OpenAI.

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

The timestamp, when the tool returned.

part_kind class-attribute instance-attribute

part_kind: Literal['tool-return'] = 'tool-return'

Part type identifier, this is available on all parts as a discriminator.

model_response_str

model_response_str() -> str

Return a string representation of the content for the model.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
75
76
77
78
79
80
def model_response_str(self) -> str:
    """Return a string representation of the content for the model."""
    if isinstance(self.content, str):
        return self.content
    else:
        return tool_return_ta.dump_json(self.content).decode()

model_response_object

model_response_object() -> dict[str, Any]

Return a dictionary representation of the content, wrapping non-dict types appropriately.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
82
83
84
85
86
87
88
def model_response_object(self) -> dict[str, Any]:
    """Return a dictionary representation of the content, wrapping non-dict types appropriately."""
    # gemini supports JSON dict return values, but no other JSON types, hence we wrap anything else in a dict
    if isinstance(self.content, dict):
        return tool_return_ta.dump_python(self.content, mode='json')  # pyright: ignore[reportUnknownMemberType]
    else:
        return {'return_value': tool_return_ta.dump_python(self.content, mode='json')}

RetryPromptPart dataclass

A message back to a model asking it to try again.

This can be sent for a number of reasons:

  • Pydantic validation of tool arguments failed, here content is derived from a Pydantic ValidationError
  • a tool raised a ModelRetry exception
  • no tool was found for the tool name
  • the model returned plain text when a structured response was expected
  • Pydantic validation of a structured response failed, here content is derived from a Pydantic ValidationError
  • a result validator raised a ModelRetry exception
Source code in pydantic_ai_slim/pydantic_ai/messages.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
@dataclass
class RetryPromptPart:
    """A message back to a model asking it to try again.

    This can be sent for a number of reasons:

    * Pydantic validation of tool arguments failed, here content is derived from a Pydantic
      [`ValidationError`][pydantic_core.ValidationError]
    * a tool raised a [`ModelRetry`][pydantic_ai.exceptions.ModelRetry] exception
    * no tool was found for the tool name
    * the model returned plain text when a structured response was expected
    * Pydantic validation of a structured response failed, here content is derived from a Pydantic
      [`ValidationError`][pydantic_core.ValidationError]
    * a result validator raised a [`ModelRetry`][pydantic_ai.exceptions.ModelRetry] exception
    """

    content: list[pydantic_core.ErrorDetails] | str
    """Details of why and how the model should retry.

    If the retry was triggered by a [`ValidationError`][pydantic_core.ValidationError], this will be a list of
    error details.
    """

    tool_name: str | None = None
    """The name of the tool that was called, if any."""

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp, when the retry was triggered."""

    part_kind: Literal['retry-prompt'] = 'retry-prompt'
    """Part type identifier, this is available on all parts as a discriminator."""

    def model_response(self) -> str:
        """Return a string message describing why the retry is requested."""
        if isinstance(self.content, str):
            description = self.content
        else:
            json_errors = error_details_ta.dump_json(self.content, exclude={'__all__': {'ctx'}}, indent=2)
            description = f'{len(self.content)} validation errors: {json_errors.decode()}'
        return f'{description}\n\nFix the errors and try again.'

content instance-attribute

content: list[ErrorDetails] | str

Details of why and how the model should retry.

If the retry was triggered by a ValidationError, this will be a list of error details.

tool_name class-attribute instance-attribute

tool_name: str | None = None

The name of the tool that was called, if any.

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

Optional tool call identifier, this is used by some models including OpenAI.

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

The timestamp, when the retry was triggered.

part_kind class-attribute instance-attribute

part_kind: Literal['retry-prompt'] = 'retry-prompt'

Part type identifier, this is available on all parts as a discriminator.

model_response

model_response() -> str

Return a string message describing why the retry is requested.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
129
130
131
132
133
134
135
136
def model_response(self) -> str:
    """Return a string message describing why the retry is requested."""
    if isinstance(self.content, str):
        description = self.content
    else:
        json_errors = error_details_ta.dump_json(self.content, exclude={'__all__': {'ctx'}}, indent=2)
        description = f'{len(self.content)} validation errors: {json_errors.decode()}'
    return f'{description}\n\nFix the errors and try again.'

ModelRequestPart module-attribute

A message part sent by PydanticAI to a model.

ModelRequest dataclass

A request generated by PydanticAI and sent to a model, e.g. a message from the PydanticAI app to the model.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
145
146
147
148
149
150
151
152
153
@dataclass
class ModelRequest:
    """A request generated by PydanticAI and sent to a model, e.g. a message from the PydanticAI app to the model."""

    parts: list[ModelRequestPart]
    """The parts of the user message."""

    kind: Literal['request'] = 'request'
    """Message type identifier, this is available on all parts as a discriminator."""

parts instance-attribute

The parts of the user message.

kind class-attribute instance-attribute

kind: Literal['request'] = 'request'

Message type identifier, this is available on all parts as a discriminator.

TextPart dataclass

A plain text response from a model.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
156
157
158
159
160
161
162
163
164
165
166
167
168
@dataclass
class TextPart:
    """A plain text response from a model."""

    content: str
    """The text content of the response."""

    part_kind: Literal['text'] = 'text'
    """Part type identifier, this is available on all parts as a discriminator."""

    def has_content(self) -> bool:
        """Return `True` if the text content is non-empty."""
        return bool(self.content)

content instance-attribute

content: str

The text content of the response.

part_kind class-attribute instance-attribute

part_kind: Literal['text'] = 'text'

Part type identifier, this is available on all parts as a discriminator.

has_content

has_content() -> bool

Return True if the text content is non-empty.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
166
167
168
def has_content(self) -> bool:
    """Return `True` if the text content is non-empty."""
    return bool(self.content)

ToolCallPart dataclass

A tool call from a model.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
@dataclass
class ToolCallPart:
    """A tool call from a model."""

    tool_name: str
    """The name of the tool to call."""

    args: str | dict[str, Any]
    """The arguments to pass to the tool.

    This is stored either as a JSON string or a Python dictionary depending on how data was received.
    """

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI."""

    part_kind: Literal['tool-call'] = 'tool-call'
    """Part type identifier, this is available on all parts as a discriminator."""

    def args_as_dict(self) -> dict[str, Any]:
        """Return the arguments as a Python dictionary.

        This is just for convenience with models that require dicts as input.
        """
        if isinstance(self.args, dict):
            return self.args
        args = pydantic_core.from_json(self.args)
        assert isinstance(args, dict), 'args should be a dict'
        return cast(dict[str, Any], args)

    def args_as_json_str(self) -> str:
        """Return the arguments as a JSON string.

        This is just for convenience with models that require JSON strings as input.
        """
        if isinstance(self.args, str):
            return self.args
        return pydantic_core.to_json(self.args).decode()

    def has_content(self) -> bool:
        """Return `True` if the arguments contain any data."""
        if isinstance(self.args, dict):
            # TODO: This should probably return True if you have the value False, or 0, etc.
            #   It makes sense to me to ignore empty strings, but not sure about empty lists or dicts
            return any(self.args.values())
        else:
            return bool(self.args)

tool_name instance-attribute

tool_name: str

The name of the tool to call.

args instance-attribute

args: str | dict[str, Any]

The arguments to pass to the tool.

This is stored either as a JSON string or a Python dictionary depending on how data was received.

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

Optional tool call identifier, this is used by some models including OpenAI.

part_kind class-attribute instance-attribute

part_kind: Literal['tool-call'] = 'tool-call'

Part type identifier, this is available on all parts as a discriminator.

args_as_dict

args_as_dict() -> dict[str, Any]

Return the arguments as a Python dictionary.

This is just for convenience with models that require dicts as input.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
190
191
192
193
194
195
196
197
198
199
def args_as_dict(self) -> dict[str, Any]:
    """Return the arguments as a Python dictionary.

    This is just for convenience with models that require dicts as input.
    """
    if isinstance(self.args, dict):
        return self.args
    args = pydantic_core.from_json(self.args)
    assert isinstance(args, dict), 'args should be a dict'
    return cast(dict[str, Any], args)

args_as_json_str

args_as_json_str() -> str

Return the arguments as a JSON string.

This is just for convenience with models that require JSON strings as input.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
201
202
203
204
205
206
207
208
def args_as_json_str(self) -> str:
    """Return the arguments as a JSON string.

    This is just for convenience with models that require JSON strings as input.
    """
    if isinstance(self.args, str):
        return self.args
    return pydantic_core.to_json(self.args).decode()

has_content

has_content() -> bool

Return True if the arguments contain any data.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
210
211
212
213
214
215
216
217
def has_content(self) -> bool:
    """Return `True` if the arguments contain any data."""
    if isinstance(self.args, dict):
        # TODO: This should probably return True if you have the value False, or 0, etc.
        #   It makes sense to me to ignore empty strings, but not sure about empty lists or dicts
        return any(self.args.values())
    else:
        return bool(self.args)

ModelResponsePart module-attribute

ModelResponsePart = Annotated[
    Union[TextPart, ToolCallPart],
    Discriminator("part_kind"),
]

A message part returned by a model.

ModelResponse dataclass

A response from a model, e.g. a message from the model to the PydanticAI app.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
@dataclass
class ModelResponse:
    """A response from a model, e.g. a message from the model to the PydanticAI app."""

    parts: list[ModelResponsePart]
    """The parts of the model message."""

    model_name: str | None = None
    """The name of the model that generated the response."""

    timestamp: datetime = field(default_factory=_now_utc)
    """The timestamp of the response.

    If the model provides a timestamp in the response (as OpenAI does) that will be used.
    """

    kind: Literal['response'] = 'response'
    """Message type identifier, this is available on all parts as a discriminator."""

parts instance-attribute

The parts of the model message.

model_name class-attribute instance-attribute

model_name: str | None = None

The name of the model that generated the response.

timestamp class-attribute instance-attribute

timestamp: datetime = field(default_factory=now_utc)

The timestamp of the response.

If the model provides a timestamp in the response (as OpenAI does) that will be used.

kind class-attribute instance-attribute

kind: Literal['response'] = 'response'

Message type identifier, this is available on all parts as a discriminator.

ModelMessage module-attribute

ModelMessage = Annotated[
    Union[ModelRequest, ModelResponse],
    Discriminator("kind"),
]

Any message sent to or returned by a model.

ModelMessagesTypeAdapter module-attribute

ModelMessagesTypeAdapter = TypeAdapter(
    list[ModelMessage], config=ConfigDict(defer_build=True)
)

Pydantic TypeAdapter for (de)serializing messages.

TextPartDelta dataclass

A partial update (delta) for a TextPart to append new text content.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
@dataclass
class TextPartDelta:
    """A partial update (delta) for a `TextPart` to append new text content."""

    content_delta: str
    """The incremental text content to add to the existing `TextPart` content."""

    part_delta_kind: Literal['text'] = 'text'
    """Part delta type identifier, used as a discriminator."""

    def apply(self, part: ModelResponsePart) -> TextPart:
        """Apply this text delta to an existing `TextPart`.

        Args:
            part: The existing model response part, which must be a `TextPart`.

        Returns:
            A new `TextPart` with updated text content.

        Raises:
            ValueError: If `part` is not a `TextPart`.
        """
        if not isinstance(part, TextPart):
            raise ValueError('Cannot apply TextPartDeltas to non-TextParts')
        return replace(part, content=part.content + self.content_delta)

content_delta instance-attribute

content_delta: str

The incremental text content to add to the existing TextPart content.

part_delta_kind class-attribute instance-attribute

part_delta_kind: Literal['text'] = 'text'

Part delta type identifier, used as a discriminator.

apply

apply(part: ModelResponsePart) -> TextPart

Apply this text delta to an existing TextPart.

Parameters:

Name Type Description Default
part ModelResponsePart

The existing model response part, which must be a TextPart.

required

Returns:

Type Description
TextPart

A new TextPart with updated text content.

Raises:

Type Description
ValueError

If part is not a TextPart.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def apply(self, part: ModelResponsePart) -> TextPart:
    """Apply this text delta to an existing `TextPart`.

    Args:
        part: The existing model response part, which must be a `TextPart`.

    Returns:
        A new `TextPart` with updated text content.

    Raises:
        ValueError: If `part` is not a `TextPart`.
    """
    if not isinstance(part, TextPart):
        raise ValueError('Cannot apply TextPartDeltas to non-TextParts')
    return replace(part, content=part.content + self.content_delta)

ToolCallPartDelta dataclass

A partial update (delta) for a ToolCallPart to modify tool name, arguments, or tool call ID.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
@dataclass
class ToolCallPartDelta:
    """A partial update (delta) for a `ToolCallPart` to modify tool name, arguments, or tool call ID."""

    tool_name_delta: str | None = None
    """Incremental text to add to the existing tool name, if any."""

    args_delta: str | dict[str, Any] | None = None
    """Incremental data to add to the tool arguments.

    If this is a string, it will be appended to existing JSON arguments.
    If this is a dict, it will be merged with existing dict arguments.
    """

    tool_call_id: str | None = None
    """Optional tool call identifier, this is used by some models including OpenAI.

    Note this is never treated as a delta — it can replace None, but otherwise if a
    non-matching value is provided an error will be raised."""

    part_delta_kind: Literal['tool_call'] = 'tool_call'
    """Part delta type identifier, used as a discriminator."""

    def as_part(self) -> ToolCallPart | None:
        """Convert this delta to a fully formed `ToolCallPart` if possible, otherwise return `None`.

        Returns:
            A `ToolCallPart` if both `tool_name_delta` and `args_delta` are set, otherwise `None`.
        """
        if self.tool_name_delta is None or self.args_delta is None:
            return None

        return ToolCallPart(
            self.tool_name_delta,
            self.args_delta,
            self.tool_call_id,
        )

    @overload
    def apply(self, part: ModelResponsePart) -> ToolCallPart: ...

    @overload
    def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta: ...

    def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
        """Apply this delta to a part or delta, returning a new part or delta with the changes applied.

        Args:
            part: The existing model response part or delta to update.

        Returns:
            Either a new `ToolCallPart` or an updated `ToolCallPartDelta`.

        Raises:
            ValueError: If `part` is neither a `ToolCallPart` nor a `ToolCallPartDelta`.
            UnexpectedModelBehavior: If applying JSON deltas to dict arguments or vice versa.
        """
        if isinstance(part, ToolCallPart):
            return self._apply_to_part(part)

        if isinstance(part, ToolCallPartDelta):
            return self._apply_to_delta(part)

        raise ValueError(f'Can only apply ToolCallPartDeltas to ToolCallParts or ToolCallPartDeltas, not {part}')

    def _apply_to_delta(self, delta: ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
        """Internal helper to apply this delta to another delta."""
        if self.tool_name_delta:
            # Append incremental text to the existing tool_name_delta
            updated_tool_name_delta = (delta.tool_name_delta or '') + self.tool_name_delta
            delta = replace(delta, tool_name_delta=updated_tool_name_delta)

        if isinstance(self.args_delta, str):
            if isinstance(delta.args_delta, dict):
                raise UnexpectedModelBehavior(
                    f'Cannot apply JSON deltas to non-JSON tool arguments ({delta=}, {self=})'
                )
            updated_args_delta = (delta.args_delta or '') + self.args_delta
            delta = replace(delta, args_delta=updated_args_delta)
        elif isinstance(self.args_delta, dict):
            if isinstance(delta.args_delta, str):
                raise UnexpectedModelBehavior(
                    f'Cannot apply dict deltas to non-dict tool arguments ({delta=}, {self=})'
                )
            updated_args_delta = {**(delta.args_delta or {}), **self.args_delta}
            delta = replace(delta, args_delta=updated_args_delta)

        if self.tool_call_id:
            # Set the tool_call_id if it wasn't present, otherwise error if it has changed
            if delta.tool_call_id is not None and delta.tool_call_id != self.tool_call_id:
                raise UnexpectedModelBehavior(
                    f'Cannot apply a new tool_call_id to a ToolCallPartDelta that already has one ({delta=}, {self=})'
                )
            delta = replace(delta, tool_call_id=self.tool_call_id)

        # If we now have enough data to create a full ToolCallPart, do so
        if delta.tool_name_delta is not None and delta.args_delta is not None:
            return ToolCallPart(
                delta.tool_name_delta,
                delta.args_delta,
                delta.tool_call_id,
            )

        return delta

    def _apply_to_part(self, part: ToolCallPart) -> ToolCallPart:
        """Internal helper to apply this delta directly to a `ToolCallPart`."""
        if self.tool_name_delta:
            # Append incremental text to the existing tool_name
            tool_name = part.tool_name + self.tool_name_delta
            part = replace(part, tool_name=tool_name)

        if isinstance(self.args_delta, str):
            if not isinstance(part.args, str):
                raise UnexpectedModelBehavior(f'Cannot apply JSON deltas to non-JSON tool arguments ({part=}, {self=})')
            updated_json = part.args + self.args_delta
            part = replace(part, args=updated_json)
        elif isinstance(self.args_delta, dict):
            if not isinstance(part.args, dict):
                raise UnexpectedModelBehavior(f'Cannot apply dict deltas to non-dict tool arguments ({part=}, {self=})')
            updated_dict = {**(part.args or {}), **self.args_delta}
            part = replace(part, args=updated_dict)

        if self.tool_call_id:
            # Replace the tool_call_id entirely if given
            if part.tool_call_id is not None and part.tool_call_id != self.tool_call_id:
                raise UnexpectedModelBehavior(
                    f'Cannot apply a new tool_call_id to a ToolCallPartDelta that already has one ({part=}, {self=})'
                )
            part = replace(part, tool_call_id=self.tool_call_id)
        return part

tool_name_delta class-attribute instance-attribute

tool_name_delta: str | None = None

Incremental text to add to the existing tool name, if any.

args_delta class-attribute instance-attribute

args_delta: str | dict[str, Any] | None = None

Incremental data to add to the tool arguments.

If this is a string, it will be appended to existing JSON arguments. If this is a dict, it will be merged with existing dict arguments.

tool_call_id class-attribute instance-attribute

tool_call_id: str | None = None

Optional tool call identifier, this is used by some models including OpenAI.

Note this is never treated as a delta — it can replace None, but otherwise if a non-matching value is provided an error will be raised.

part_delta_kind class-attribute instance-attribute

part_delta_kind: Literal['tool_call'] = 'tool_call'

Part delta type identifier, used as a discriminator.

as_part

as_part() -> ToolCallPart | None

Convert this delta to a fully formed ToolCallPart if possible, otherwise return None.

Returns:

Type Description
ToolCallPart | None

A ToolCallPart if both tool_name_delta and args_delta are set, otherwise None.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def as_part(self) -> ToolCallPart | None:
    """Convert this delta to a fully formed `ToolCallPart` if possible, otherwise return `None`.

    Returns:
        A `ToolCallPart` if both `tool_name_delta` and `args_delta` are set, otherwise `None`.
    """
    if self.tool_name_delta is None or self.args_delta is None:
        return None

    return ToolCallPart(
        self.tool_name_delta,
        self.args_delta,
        self.tool_call_id,
    )

apply

Apply this delta to a part or delta, returning a new part or delta with the changes applied.

Parameters:

Name Type Description Default
part ModelResponsePart | ToolCallPartDelta

The existing model response part or delta to update.

required

Returns:

Type Description
ToolCallPart | ToolCallPartDelta

Either a new ToolCallPart or an updated ToolCallPartDelta.

Raises:

Type Description
ValueError

If part is neither a ToolCallPart nor a ToolCallPartDelta.

UnexpectedModelBehavior

If applying JSON deltas to dict arguments or vice versa.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def apply(self, part: ModelResponsePart | ToolCallPartDelta) -> ToolCallPart | ToolCallPartDelta:
    """Apply this delta to a part or delta, returning a new part or delta with the changes applied.

    Args:
        part: The existing model response part or delta to update.

    Returns:
        Either a new `ToolCallPart` or an updated `ToolCallPartDelta`.

    Raises:
        ValueError: If `part` is neither a `ToolCallPart` nor a `ToolCallPartDelta`.
        UnexpectedModelBehavior: If applying JSON deltas to dict arguments or vice versa.
    """
    if isinstance(part, ToolCallPart):
        return self._apply_to_part(part)

    if isinstance(part, ToolCallPartDelta):
        return self._apply_to_delta(part)

    raise ValueError(f'Can only apply ToolCallPartDeltas to ToolCallParts or ToolCallPartDeltas, not {part}')

ModelResponsePartDelta module-attribute

ModelResponsePartDelta = Annotated[
    Union[TextPartDelta, ToolCallPartDelta],
    Discriminator("part_delta_kind"),
]

A partial update (delta) for any model response part.

PartStartEvent dataclass

An event indicating that a new part has started.

If multiple PartStartEvents are received with the same index, the new one should fully replace the old one.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
@dataclass
class PartStartEvent:
    """An event indicating that a new part has started.

    If multiple `PartStartEvent`s are received with the same index,
    the new one should fully replace the old one.
    """

    index: int
    """The index of the part within the overall response parts list."""

    part: ModelResponsePart
    """The newly started `ModelResponsePart`."""

    event_kind: Literal['part_start'] = 'part_start'
    """Event type identifier, used as a discriminator."""

index instance-attribute

index: int

The index of the part within the overall response parts list.

part instance-attribute

The newly started ModelResponsePart.

event_kind class-attribute instance-attribute

event_kind: Literal['part_start'] = 'part_start'

Event type identifier, used as a discriminator.

PartDeltaEvent dataclass

An event indicating a delta update for an existing part.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
433
434
435
436
437
438
439
440
441
442
443
444
@dataclass
class PartDeltaEvent:
    """An event indicating a delta update for an existing part."""

    index: int
    """The index of the part within the overall response parts list."""

    delta: ModelResponsePartDelta
    """The delta to apply to the specified part."""

    event_kind: Literal['part_delta'] = 'part_delta'
    """Event type identifier, used as a discriminator."""

index instance-attribute

index: int

The index of the part within the overall response parts list.

delta instance-attribute

The delta to apply to the specified part.

event_kind class-attribute instance-attribute

event_kind: Literal['part_delta'] = 'part_delta'

Event type identifier, used as a discriminator.

ModelResponseStreamEvent module-attribute

ModelResponseStreamEvent = Annotated[
    Union[PartStartEvent, PartDeltaEvent],
    Discriminator("event_kind"),
]

An event in the model response stream, either starting a new part or applying a delta to an existing one.

FunctionToolCallEvent dataclass

An event indicating the start to a call to a function tool.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
451
452
453
454
455
456
457
458
459
460
461
462
463
@dataclass
class FunctionToolCallEvent:
    """An event indicating the start to a call to a function tool."""

    part: ToolCallPart
    """The (function) tool call to make."""
    call_id: str = field(init=False)
    """An ID used for matching details about the call to its result. If present, defaults to the part's tool_call_id."""
    event_kind: Literal['function_tool_call'] = 'function_tool_call'
    """Event type identifier, used as a discriminator."""

    def __post_init__(self):
        self.call_id = self.part.tool_call_id or str(uuid.uuid4())

part instance-attribute

The (function) tool call to make.

call_id class-attribute instance-attribute

call_id: str = field(init=False)

An ID used for matching details about the call to its result. If present, defaults to the part's tool_call_id.

event_kind class-attribute instance-attribute

event_kind: Literal["function_tool_call"] = (
    "function_tool_call"
)

Event type identifier, used as a discriminator.

FunctionToolResultEvent dataclass

An event indicating the result of a function tool call.

Source code in pydantic_ai_slim/pydantic_ai/messages.py
466
467
468
469
470
471
472
473
474
475
@dataclass
class FunctionToolResultEvent:
    """An event indicating the result of a function tool call."""

    result: ToolReturnPart | RetryPromptPart
    """The result of the call to the function tool."""
    call_id: str
    """An ID used to match the result to its original call."""
    event_kind: Literal['function_tool_result'] = 'function_tool_result'
    """Event type identifier, used as a discriminator."""

result instance-attribute

The result of the call to the function tool.

call_id instance-attribute

call_id: str

An ID used to match the result to its original call.

event_kind class-attribute instance-attribute

event_kind: Literal["function_tool_result"] = (
    "function_tool_result"
)

Event type identifier, used as a discriminator.